Привет, товарищи! Нужен совет по реализации проекта.
Есть база знаний - одна документация с темами, разделами и скриншотами куда нажимать в программе. Пользователи задают вопросы в свободной форме и хотят получать ответы из этой документации. Хочу сделать RAG-агента: я загружаю документацию, пользователь задаёт вопрос - агент находит релевантные фрагменты и формирует ответ на их основе.
Тема для меня новая. Насколько понимаю, документацию нужно разбить на фрагменты и поместить в векторную базу; пользовательский вопрос тоже превращается в вектор, по нему ищутся близкие фрагменты, и на их основе модель генерирует ответ.
Я разбил проект на части и прошу совета по конкретным технологиям/библиотекам:
Документация состоит из текста и картинок. Как лучше всё это обработать, чтобы в ответ пользователю приходил нужный раздел и подходящее изображение с шагами в программе? Чем это реализовать?
Какую векторную базу выбрать? Желательно локальную, но рассмотрю и облачные варианты.
Модель планируется облачная. Что выбрать по соотношению качество/стоимость? Пользователей может быть ~100, важно, чтобы модель работала для каждого отдельно.
Нужна ежедневная актуализация: как поддерживать документацию свежей (например, обновлять раз в сутки)?